High-yield anthocyanin biosynthesis in engineered Escherichia coli.

نویسندگان

  • Yajun Yan
  • Zhen Li
  • Mattheos A G Koffas
چکیده

Anthocyanins are red, purple, or blue plant water-soluble pigments. In the past two decades, anthocyanins have received extensive studies for their anti-oxidative, anti-inflammatory, anti-cancer, anti-obesity, anti-diabetic, and cardioprotective properties. In the present study, anthocyanin biosynthetic enzymes from different plant species were characterized and employed for pathway construction leading from inexpensive precursors such as flavanones and flavan-3-ols to anthocyanins in Escherichia coli. The recombinant E. coli cells successfully achieved milligram level production of two anthocyanins, pelargonidin 3-O-glucoside (0.98 mg/L) and cyanidin 3-O-gluside (2.07 mg/L) from their respective flavanone precursors naringenin and eriodictyol. Cyanidin 3-O-glucoside was produced at even higher yields (16.1 mg/L) from its flavan-3-ol, (+)-catechin precursor. Further studies demonstrated that availability of the glucosyl donor, UDP-glucose, was the key metabolic limitation, while product instability at normal pH was also identified as a barrier for production improvement. Therefore, various optimization strategies were employed for enhancing the homogenous synthesis of UDP-glucose in the host cells while at the same time stabilizing the final anthocyanin product. Such optimizations included culture medium pH adjustment, the creation of fusion proteins and the rational manipulation of E. coli metabolic network for improving the intracellular UDP-glucose metabolic pool. As a result, production of pelargonidin 3-O-glucoside at 78.9 mg/L and cyanidin 3-O-glucoside at 70.7 mg/L was achieved from their precursor flavan-3-ols without supplementation with extracellular UDP-glucose. These results demonstrate the efficient production of the core anthocyanins for the first time and open the possibility for their commercialization for pharmaceutical and nutraceutical applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metabolic engineering of Escherichia coli for production of enantiomerically pure (R)-(--)-hydroxycarboxylic acids.

A heterologous metabolism of polyhydroxyalkanoate (PHA) biosynthesis and degradation was established in Escherichia coli by introducing the Ralstonia eutropha PHA biosynthesis operon along with the R. eutropha intracellular PHA depolymerase gene. By with this metabolically engineered E. coli, enantiomerically pure (R)-3-hydroxybutyric acid (R3HB) could be efficiently produced from glucose. By e...

متن کامل

Effect of Concomitant Lycopene Biosynthesis on CoQ10 Accumulation in Transformed Escherichia coli Strains

CoQ10 and lycopene are isoprenoid compounds with nutraceutical and pharmaceutical benefits. In this study, the effect of concomitant lycopene biosynthesis on CoQ10 accumulation in transformed Escherichia coli DH5α was studied. A lycopene production pathway including geranylgeranyl diphosphate synthase (crtE), phytoene synthase (crtB), and phytoene desaturase (crtI) from Erwinia herbicola was co...

متن کامل

Whole cell biosynthesis of a functional oligosaccharide, 2′-fucosyllactose, using engineered Escherichia coli

BACKGROUND 2'-Fucosyllactose (2-FL) is a functional oligosaccharide present in human milk which protects against the infection of enteric pathogens. Because 2-FL can be synthesized through the enzymatic fucosylation of lactose with guanosine 5'-diphosphate (GDP)-l-fucose by α-1,2-fucosyltransferase (FucT2), an 2-FL producing Escherichia coli can be constructed through overexpressing genes codin...

متن کامل

Metabolic engineering of Escherichia coli for the production of cinnamaldehyde

BACKGROUND Plant parasitic nematodes are harmful to agricultural crops and plants, and may cause severe yield losses. Cinnamaldehyde, a volatile, yellow liquid commonly used as a flavoring or food additive, is increasingly becoming a popular natural nematicide because of its high nematicidal activity and, there is a high demand for the development of a biological platform to produce cinnamaldeh...

متن کامل

Dihydroflavonol 4-reductase cDNA from non-anthocyanin-producing species in the Caryophyllales.

Two types of red pigment, anthocyanins and betacyanins, never occur together in the same plant. Although anthocyanins are widely distributed in higher plants as flower and fruit pigments, betacyanins have replaced anthocyanins in the Caryophyllales. We isolated cDNAs encoding dihydroflavonol 4-reductase (DFR), which is the first enzyme committed to anthocyanin biosynthesis in the flavonoid path...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biotechnology and bioengineering

دوره 100 1  شماره 

صفحات  -

تاریخ انتشار 2008